

Dark Energy, the Expansion History of the Universe, and SNAP

Eric Linder Berkeley Lab

Evidence for Acceleration

Supernovae Ia:

 Ω_{DE} , w=p/ ρ , w'=dw/dz

Observation -- Magnitude-redshift relation

Age of universe:

Contours of t_0 parallel CMB acoustic peak angle: t_0 =13.7±0.2 Gyr

[Flat universe, adiabatic perturbations]

Knox et al. 2001 Spergel et al. 2003

CMB Acoustic Peaks:

Substantial dark energy, e.g. $\Omega_L = 0.73 \pm 0.04$

Bond et al. 2002 Spergel et al. 2003

[Small GW contribution, LSS, H_0]

Large Scale Structure:

Power spectrum P_k, Growth rate, "looks"

[simulations]

Dark Energy

- Supernova data shows an acceleration of the expansion, implying that the universe is dominated by a new Dark Energy!
- Remarkable agreement between Supernovae & recent CMB and LSS results.

Dark Energy Theory


```
1970s – Why \Omega_{\rm M} \sim \Omega_{\rm k}?
```

1980s – Inflation! Not curvature.

1990s – Why $\Omega_{\rm M} \sim \Omega_{\rm L}$?

2000s – Quintessence! Not Λ ?

Cosmological constant is an ugly duckling

Dynamic scalar field is a beautiful swan

Lots of theories, little data.

We want to say, for example:

2010: A dynamical scalar field with

equation of state today $w(z=0) \equiv w_0 = -0.82\pm0.05$

time variation of the EOS $dw/dz \equiv w' = 0.29\pm0.11$

consistent with Supergravity inspired field theories

L: Ugly Duckling

Astrophysicist:

Einstein equations –

$$\Lambda g_{ab}$$

$$\mathbb{P}$$
 p = -r

Naturally, $r = const = r_{PL}$

$$W_L = 10^{120}$$

Today W_L»W_M

Field Theorist:

Vacuum – Lorentz invariant

$$T_{ab} \sim \eta_{ab} = diag \{ -1, 1, 1, 1 \}$$

Naturally, $E_{vac} \sim 10^{19} \, \text{GeV}$

- Fine Tuning Puzzle why so small?
- Coincidence Puzzle why now?

Why Now?

Scalar Field: Beautiful Swan

Dynamical Field

- explain coincidence, but not fine tuning

What is an equation of state?

$$dU = -p dV$$

$$d(rV) = dr + rdV = -p dV$$

1st Law of Thermo

 $V \sim a^3$

Equation of state w=p/r

$$W = \frac{K - V(f)}{K + V(f)}$$

$$r_f(a) = r_f(0) e^{-3idlna(1+w)} \sim a^{-3(1+w)}$$

but time variation w'=dw/dz is a critical clue

What does negative pressure mean?

Consider a rubber band: dU = +T dl

Fundamental Physics

Astrophysics ® Cosmology ® Field Theory r(z) ® Equation of state w(z) ® V(f)

CMB

LSS

V (f(a(t)))

- Dynamical Effect on a(t) clean and accurate
- Effect on growth rate of large scale structure sensitive, but need to separate from astrophysics

Map the expansion history of the universe

Cosmological Probes

A handful of promising cosmological probes: What are the systematics?

SZ Effect -- cluster counts

Projection effects
Mass-temperature relation
Limiting cluster mass
needed better than 10% dex
for 3 σ bias

SZ Effect with X-ray data -- angular distance

Clumpy electron medium, asphericity Cluster map resolution

Galaxy halo counts

Mass -- halo velocity profile relation

CMB

Weak dependence on w through ISW effect Cosmic variance Weak Lensing

B modes not all zero
Lensing model: NFW, SIS halos?
Nonlinear part of power spectrum
needed better than 5%
for 1 σ bias

Strong Lensing

Lens mass distribution

- Alcock-Paczynski Effect
- Peculiar Velocities
- Type la Supernovae

Evolution Extinction Gravitational Lensing

CfCP Dark Energy Workshop (Chicago, 2001)

Type Ia Supernovae

- Characterized by no Hydrogen, but with Silicon
- Progenitor C/O White Dwarf accreting from companion
- Just before Chandrasekhar mass, thermonuclear runaway

Standard explosion from nuclear physics

Insensitive to initial conditions: "stellar amnesia"
Höflich, Gerardy, Linder, & Marion astro-ph/0301334

1 Parameter Family Homogeneity

Hubble diagram – low z

Supernova Cosmology

In flat universe:

 W_{M} =0.28 [±.085 stat][±.05 syst]

Prob. of fit to L=0 universe: 1%

SNAP: The Third Generation

Hubble Diagram

Dark Energy Exploration with SNAP

Probing Dark Energy Models

Mission Design

• ~2 m aperture telescope

Reach very distant SNe.

• 1 degree mosaic camera, ½ billion pixels

Efficiently study large numbers of SNe.

• 0.35 – 1.7 mm spectrograph

Analyze in detail each SN.

Dedicated instrument designed to repeatedly observe an area of sky.

Essentially no moving parts.

3 year operation for experiment (lifetime open ended).

SNAP Survey Fields

